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DNNV

DNNV is a framework for verifying deep neural networks (DNN). DNN verification takes in a neural network, and
a property over that network, and checks whether the property is true, or false. One common DNN property is local
robustness, which specifies that inputs near a given input, will be classified similarly to that given input.

DNNV standardizes the network and property input formats to enable multiple verification tools to run on a single
network and property. This facilitates both verifier comparison, and artifact re-use.
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CHAPTER 1

Installation

We currently recommend installing DNNV from source, since it requires less manual effort to correctly set up envi-
ronment variables.

1.1 From Source

Requirements:

• Python 3.7+

Currently, the easiest way to use DNNV is to clone the github repository, and use the provided manage.sh script to
initiallize a python virtual environment and install verifiers. This requires Python 3.7 or above to be installed, as well as
the venv module, which may need to be installed separately (e.g., sudo apt-get install python3-venv).

To clone the source code, run:

git clone https://github.com/dlshriver/DNNV.git

To create a python virtual environment, and install required pacakges for this project, run:

./manage.sh init

Additionally, we provide a script to activate the virtual environment and set up environment variables required to find
verification tools installed using manage.sh. To activate the environment, run:

. .env.d/openenv.sh

Finally, any of the supported verifiers can be installed using the install command to the manage.sh script,
followed by the name of the verifier. For example, to install the Reluplex verifier, run:

./manage.sh install reluplex

DNNV supports the following verifiers:

• Reluplex
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• planet

• BaB

• MIPVerify.jl

• Neurify

• ERAN (deepzono, deeppoly, refinezono, refinepoly)

• PLNN (bab, babsb)

• marabou

• nnenum

• VeriNet

DNNV can also be installed into an existing virtual environment. To do so, we require the module flit be installed.
To install DNNV, ensure that the desired virtual environment is activated, and then run:

flit install

This method requires the user to manually configure environment variables to point to installed verification tools. This
can still be done with the .env.d/openenv.sh script if tools were installed with manage.sh.

1.2 From Pip

DNNV can also be installed using pip. Currently, installing with pip does not provide access to the manage.sh
script, so verification tools must be installed separately. Additionally, they must be accessible on the PATH. To install
DNNV using pip, run:

pip install dnnv
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CHAPTER 2

Usage

DNNV can be used to run verification tools from the command line. If DNNV is not yet installed, see our Installation
guide for more information.

2.1 DNNV Options

DNNV can be run from the command line. Specifying the -h option will list the available options:

$ python -m dnnv -h
usage: dnnv [-h] [-V] [--seed SEED] [-v | -q] [-N NAME NETWORK] [--vnnlib]

[--bab] [--bab.reluify_maxpools RELUIFY_MAXPOOLS]
[--bab.smart_branching SMART_BRANCHING] [--eran]
[--eran.domain {deepzono,deeppoly,refinezono,refinepoly}]
[--eran.timeout_lp TIMEOUT_LP] [--eran.timeout_milp TIMEOUT_MILP]
[--eran.use_area_heuristic USE_AREA_HEURISTIC] [--marabou]
[--mipverify] [--neurify] [--neurify.max_depth MAX_DEPTH]
[--neurify.max_thread MAX_THREAD] [--nnenum]
[--nnenum.num_processes NUM_PROCESSES] [--planet] [--reluplex]
[--verinet] [--verinet.max_proc MAX_PROC]
[--verinet.no_split NO_SPLIT]
property

dnnv - deep neural network verification

positional arguments:
property

optional arguments:
-h, --help show this help message and exit
-V, --version show program's version number and exit
--seed SEED the random seed to use
-v, --verbose show messages with finer-grained information
-q, --quiet suppress non-essential messages

(continues on next page)
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(continued from previous page)

-N, --network NAME NETWORK
--vnnlib use the vnnlib property format

verifiers:
--bab
--eran
--marabou
--mipverify
--neurify
--nnenum
--planet
--reluplex
--verinet

bab parameters:
--bab.reluify_maxpools RELUIFY_MAXPOOLS
--bab.smart_branching SMART_BRANCHING

eran parameters:
--eran.domain {deepzono,deeppoly,refinezono,refinepoly}

The abstract domain to use.
--eran.timeout_lp TIMEOUT_LP

Time limit for the LP solver.
--eran.timeout_milp TIMEOUT_MILP

Time limit for the MILP solver.
--eran.use_area_heuristic USE_AREA_HEURISTIC

Whether or not to use the ERAN area heuristic.

neurify parameters:
--neurify.max_depth MAX_DEPTH

Maximum search depth for neurify.
--neurify.max_thread MAX_THREAD

Maximum number of threads to use.

nnenum parameters:
--nnenum.num_processes NUM_PROCESSES

Maximum number of processes to use.

verinet parameters:
--verinet.max_proc MAX_PROC

Maximum number of processes to use.
--verinet.no_split NO_SPLIT

Whether or not to do splitting.

DNNV requires a network and property be specified, and accepts an optional list of verifiers to be run to check the
network and property. Currently, verifiers are run sequentially, in the order that they are specified on the command
line.

2.2 Running DNNV

DNNV can be used to check whether a given property holds for a network. It accepts networks specified in the ONNX
format, and properties specified in our property DSL (which is explained in more detail here). Networks can be
converted to ONNX format by using native export utilities, such as torch.onnx.export in PyTorch, or by using
an external conversion tool, such as MMDNN.
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We provide several example networks and properties, available here. These networks and properties are from the
benchmark of the ERAN verifier, and are converted to the ONNX and property DSL formats required by DNNV.

To check a property for a network, using the ERAN verifier, DNNV can be run as:

python -m dnnv --eran --network N onnx/pyt/ffnnRELU__Point_6_500.onnx properties/pyt_
→˓property_7.py

This will check whether pyt_property_7—a local robustness property—holds for the network
ffnnRELU__Point_6_500.onnx—a 6 layer, 3000 neuron fully connected network.

DNNV will first report a basic description of the network, followed by the property to be verified. It will then run each
of the specified verifiers and report the verification result and the total time to translate and verify the property. The
output of the property check above should resemble the output below:

$ python -m dnnv --eran --network N onnx/pyt/ffnnRELU__Point_6_500.onnx properties/
→˓pyt_property_7.py
Input_0 : Input([ 1 1 28 28], dtype=float32)
Reshape_0 : Reshape(Input_0, ndarray_0)
Gemm_0 : Gemm(Reshape_0, ndarray_1, ndarray_2)
Reshape_1 : Reshape(Gemm_0, ndarray_3)
Transpose_0 : Transpose(Reshape_1, permutation=[0 2 3 1])
Reshape_2 : Reshape(Transpose_0, ndarray_4)
Gemm_1 : Gemm(Reshape_2, ndarray_5, ndarray_6)
Relu_0 : Relu(Gemm_1)
Gemm_2 : Gemm(Relu_0, ndarray_7, ndarray_8)
Relu_1 : Relu(Gemm_2)
Gemm_3 : Gemm(Relu_1, ndarray_9, ndarray_10)
Relu_2 : Relu(Gemm_3)
Gemm_4 : Gemm(Relu_2, ndarray_11, ndarray_12)
Relu_3 : Relu(Gemm_4)
Gemm_5 : Gemm(Relu_3, ndarray_13, ndarray_14)
Relu_4 : Relu(Gemm_5)
Gemm_6 : Gemm(Relu_4, ndarray_15, ndarray_16)
Relu_5 : Relu(Gemm_6)
Gemm_7 : Gemm(Relu_5, ndarray_17, ndarray_18)
Verifying property:
Forall(x_, (((x_ < 3.2457*Image("properties/image7.npy")-0.41637) & (3.2457*Image(
→˓"properties/image7.npy")-0.432056 < x_)) ==> (numpy.argmax(N[4:](x_)) == numpy.
→˓argmax(N[4:](3.2457*Image("properties/image7.npy")-0.424213)))))

dnnv.verifiers.eran
result: unsat
time: 2.4884

2.2. Running DNNV 7
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CHAPTER 3

Examples

In this section, we will go over several examples of properties, and how to check them on a network. We will also
discuss the basics of the property DSL.

We also provide several example networks and properties in an external archive, available here. These networks and
properties are from the benchmark of the ERAN verifier, and are converted to the ONNX and property DSL formats
required by DNNV.

3.1 Local Robustness

Local robustness specifies that, given an input, 𝑥, to a DNN, 𝒩 , any other input within some distance, 𝜖, of that input
will be classified to the same class. Formally:

∀𝛿 ∈ [0, 𝜖]𝑛.𝒩 (𝑥) = 𝒩 (𝑥± 𝛿)

This property can be specified in our DSL as follows:

from dnnv.properties import *
import numpy as np

N = Network("N")
x = Image(Parameter("input", type=str))
epsilon = Parameter("epsilon", float, default=1.0)

output_class = np.argmax(N(x))

Forall(
x_,
Implies(

((x - epsilon) < x_ < (x + epsilon)),
np.argmax(N(x_)) == output_class,

),
)
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3.2 ACAS Xu

Properties other than local robustness can also be specified in the DNNV property DSL. For example, the properties
for the ACAS Xu aircraft collision avoidance network (as introduced in this work) can easily be encoded.

Here we write the specification for ACAS Xu Property 𝜑3. The specification states that if an intruding aircraft is
directly ahead and moving towards our aircraft, then the score for a Clear-of-Conflict classification (class 0) will not
be minimal (this network recommends the class with the minimal score).

In this property, we also see how inputs can be pre-processed. The ACAS Xu networks expects inputs to be normalized
by subtracting a pre-computed mean value, and dividing by the given range. We apply that normalization to the input
bounds before bounding the network input, x.

from dnnv.properties import *
import numpy as np

N = Network("N")
# x: $\rho$, $\theta$, $\psi$, $v_{own}$, $v_{int}$
x_min = np.array([[1500.0, -0.06, 3.10, 980.0, 960.0]])
x_max = np.array([[1800.0, 0.06, 3.141593, 1200.0, 1200.0]])

x_mean = np.array([[1.9791091e04, 0.0, 0.0, 650.0, 600.0]])
x_range = np.array([[60261.0, 6.28318530718, 6.28318530718, 1100.0, 1200.0]])

x_min_normalized = (x_min - x_mean) / x_range
x_max_normalized = (x_max - x_mean) / x_range

Forall(
x, Implies(x_min_normalized <= x <= x_max_normalized, argmin(N(x)) != 0),

)
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CHAPTER 4

Specifying Properties

A property specification defines the desired behavior of a DNN in a formal language. DNNV uses a custom DSL for
writing property specifications, based on the Python programming language, which we call DNNP. In this section we
will go over this language in detail and describe how properties can be specified in this DSL. To see some examples
of common properties specified in this language, check here).

Because the property DSL extends from Python, it should support execution of arbitrary Python code. However,
DNNV is still of a work-in-progress, so some expressions (such as star expressions) are not yet supported by our
property parser. We are still working to fully support all Python expressions, but the current version supports the most
common use cases, and can handle all of the DNN properties that we have tried.

4.1 General Structure

The general structure of a property specification is as follows:

1. A set of python module imports

2. A set of variable definitions

3. A property formula

4.1.1 Imports

Imports have the same syntax as Python import statements, and they can be used to import arbitrary Python modules
and packages. This allows re-use of datasets or input pre-processing code. For example, the Python package numpy
can be imported to load a dataset. Inputs can then be selected from the dataset, or statistics, such as the mean data
point, can be computed on the fly.

While not necessary for correctness, we recommend importing the dnnv.properties package as from dnnv.
properties import *, which can enable autocompletion and type hints in many code editors.
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4.1.2 Definitions

After any imports, DNNP allows a sequence of assignments to define variables that can be used in the final property
specification. For example, i = 0, will define the variable i to a value of 0.

These definitions can be used to load data and configuration parameters, or to alias expressions that may be used in
the property formula. For example, if the torchvision.datasets package has been imported, then data =
datasets.MNIST("/tmp")will define a variable data referencing the MNIST dataset from this package. Addi-
tionally, the Parameter class can be used to declare parameters that can be specified at run time. For example, eps
= Parameter("epsilon", type=float), will define the variable eps to have type float and will expect a
value to be specified at run time. This value can be specified to DNNV with the option --prop.epsilon.

Definitions can also assign expressions to variables to be used in the property specification later. For example,
x_in_unit_hyper_cube = 0 <= x <= 1 can be used to assign an expression specifying that the variable
x is within the unit hyper cube to a variable. This could be useful for more complex properties with a lot of redundant
sub expressions.

A network can be defined using the Network class. For example, N = Network("N"), specifies a network with
the name N (which is used at run time to concretize the network with a specific DNN model). All networks with the
same name refer to the same model.

4.1.3 Property Formula

Finally, the last part of the property specification is the property formula itself. It must appear at the end of the property
specification. All statements before the property formula must be either import or assignment statements.

The property formula defines the desired behavior of the DNN in a subset of first-order-logic. It can make use of
arbitrary Python code, as well as any of the expressions defined before it.

DNNP provides many functions to define expressions. The function Forall(symbol, expression) can
be used to specify that the provided expression is valid for all values of the specified symbol. The function
And(*expression), specifies that all of the expressions passed as arguments to the function must be valid.
And(expr1, expr2) can be equivalently specified as expr1 & expr2. The function Or(*expression),
specifies that at least one of the expressions passed as arguments to the function must be valid. Or(expr1, expr2)
can be equivalently specified as expr1 | expr2. The function Implies(expression1, expression2),
specifies that if expression1 is true, then expression2 must also be true. The argmin() and argmax()
functions can be used to get the argmin or argmax value of a network’s output, respectively.

In property expressions, networks can be called like functions to get the outputs for the network for a given input.
Networks can be applied to symbolic variables (such as universally quantified variables), as well as numpy arrays.

Currently DNNV only supports universally quantified properties over a single network input variable. Support for
more complex properties is planned.
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CHAPTER 5

Property Reduction

A verification problem is a pair, 𝜓 = ⟨𝒩 , 𝜑⟩, of a DNN, 𝒩 , and a property specification 𝜑, formed to determine
whether 𝒩 |= 𝜑 is valid or *invalid.

Reduction, 𝑟𝑒𝑑𝑢𝑐𝑒 : Ψ → 𝑃 (Ψ), aims to transform a verification problem, ⟨𝒩 , 𝜑⟩ = 𝜓 ∈ Ψ, to an equivalid form,
𝑟𝑒𝑑𝑢𝑐𝑒(𝜓) = {⟨𝒩1, 𝜑1⟩, . . . , ⟨𝒩𝑘, 𝜑𝑘⟩}, in which property specifications are in a common supported form.

Reduction enables the application of a broad array of efficient DNN analysis techniques to compute problem validity
and/or invalidity.

As defined, reduction has two key properties. The first property is that the set of resulting problems is equivalid with
the original verification problem.

𝒩 |= 𝜓 ⇔ ∀⟨𝒩𝑖, 𝜑𝑖⟩ ∈ 𝑟𝑒𝑑𝑢𝑐𝑒(𝜓).𝒩𝑖 |= 𝜑𝑖

The second property is that the resulting set of problems all use the same property type. For example, if the desired
property type is robustness; all resulting properties assert that 𝒩 (𝑥)0 is the output class for all inputs. Applying
reduction enables verifiers to support a large set of verification problems by implementing support for this single
property type.

5.1 Overview

To illustrate, consider a property for DroNet; a DNN for controlling an autonomous quadrotor. Inputs to this network
are 200 by 200 pixel grayscale images with pixel values between 0 and 1. For each image, DroNet predicts a steering
angle and a probability that the drone is about to collide with an object. The property states that for all inputs, if the
probability of collision is no greater than 0.1, then the steering angle is capped at ±5 degrees and is specified as:

∀𝑥.((𝑥 ∈ [0, 1]40000) ∧ (𝒩 (𝑥)𝑃𝑐𝑜𝑙𝑙 ≤ 0.1)) → (−5∘ ≤ 𝒩 (𝑥)𝑆𝑡𝑒𝑒𝑟 ≤ 5∘)

To enable the application of many verifiers, we can reduce the property to a set of verification problems with robustness
properties. This particular example is reduced to two verification problems with robustness properties. Each of the
problems produced pair a robustness property (i.e., ∀𝑥.(𝑥 ∈ [0, 1]40000) → (𝒩0 > 𝒩1)) with a modified version of
the original DNN. The new DNN is created by incorporating a suffix network that takes in the outputs of the original
DNN and classifies whether they constitute a violation of the original property. This suffix transforms the network into
a classifier for which violations of a robustness property correspond to violations of the original property.
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5.2 Reduction

We rely on three assumptions to transform a verification problem into a reduced form. First, the constraints on
the network inputs must be represented as a union of convex polytopes. Second, the constraints on the outputs of
the network must be represented as a union of convex polytopes. Third, we assume that each convex polytope is
represented as a conjunction of linear inequalities. Complying with these assumptions still enables properties to
retain a high degree of expressiveness as unions of polytopes are extremely general and subsume other geometric
representations, such as intervals and zonotopes.

We present each step of property reduction below and describe their application to the DroNet example described
above. For the purpose of this description we choose to reduce to verification problems with robustness problems.
Reducing to reachability problems differs only in the final property, which specifies that the output value 𝒩 (𝑥)0 must
always be greater than 0.

5.2.1 Reformat the property

Reduction first negates the original property specification and converts it to disjunctive normal form (DNF). Negating
the specification means that a satisfying model falsifies the original property. The DNF representation allows us to
construct a property for each disjunct, such that if any are violated, the negated specification is satisfied and thus
the original specification is falsified. For each of these disjuncts the approach defines a new robustness problem, as
described below.

5.2.2 Transform into halfspace-polytopes

Constraints in each disjunct that correspond to constraints over the output are converted to halfspace-polytope con-
straints, defined over the concatenation of the input and output domains. A halfspace-polytope can be represented in
the form 𝐴𝑥 ≤ 𝑏, where 𝐴 is a matrix of 𝑘 rows, where each row represents 1 constraint, and 𝑚 columns, one for
each dimension in the output space. This representation facilitates the transformation of constraints into network oper-
ations. To build the matrix 𝐴 and vector 𝑏, we first transform all inequalities in the conjunction to ≤ inequalities with
variables on the left-hand-side and constants on the right-hand-side. The transformation first converts ≥ to ≤ and > to
<. Then, all variables are moved to the left-hand-side and all constants to the right-hand-side. Next, < constraints are
converted to ≤ constraints by decrementing the constant value on the right-hand-side. This transformation assumes
that there exists a representable number with greatest possible value that is less than the right-hand-side. Finally, each
inequality is converted to a row of 𝐴 and value in 𝑏.

5.2.3 Suffix construction

Using the generated halfspace-polytope, we build a suffix subnetwork that classifies whether outputs satisfy the spec-
ification. The constructed suffix has two layers, a hidden fully-connected layer with ReLU activations, and dimension
equal to the number of constraints in the halfspace-polytope defined by the current disjunct, and a final output layer of
size 2.

The hidden layer of the suffix has a weight matrix equal to the constraint matrix, 𝐴, of the halfspace-polytope rep-
resentation, and a bias equal to −𝑏. With this construction, each neuron will only have a value greater than 0 if the
corresponding constraint is not satisfied, otherwise it will have a value less than or equal to 0, which becomes equal
to 0 after the ReLU activation is applied. In the DroNet problem for example, one of the constraints for a disjunct is
(𝒩 (𝑥)𝑆 ≤ −5∘). For this conjunct we define the weights for one of the neurons to have a weight of 1 from 𝒩 (𝑥)𝑆 , a
weight of 0 from 𝒩 (𝑥)𝑃 , and a bias of 5∘.

The output layer of the suffix has 2 neurons, each with no activation function. The first of these neurons is the sum of
all neurons in the previous layer, and has a bias value of 0. Because the neurons in the previous layer each represent a
constraint, and each of these neurons is 0 only when the constraint is satisfied, if the sum of all these neurons is 0, then
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the conjunction of the constraints is satisfied, indicating that a violation has been found. The second of these neurons
has a constant value of 0 – all incoming weights and bias are 0. The resulting network will predict class 1 if the input
satisfies the corresponding disjunct and class 0 otherwise.

5.2.4 Problem construction

The robustness property specification states that the network should classify all inputs that satisfy the input precon-
ditions as class 0 – no violations. If a violation is found to this property, then the original property is violated by the
input that violated the robustness property. In the end, we have generated a set of verification problems such that, if
any of the problems is violated, then the original problem is also violated. This comes from our construction of a
property for each disjunct in the DNF of the negation of the original property.

5.2. Reduction 15
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CHAPTER 6

DNN Simplification

In order to allow verifiers to be applied to a wider range of real world networks, DNNV provides tools to simplify
networks to more standard forms, while preserving the behavioral semantics of the network.

Network simplification takes in an operation graph and applies a set of semantics preserving transformations to the op-
eration graph to remove unsupported structures, or to transform sequences of operations into a single more commonly
supported operation.

An operation graph 𝐺𝒩 = ⟨𝑉𝒩 , 𝐸𝒩 ⟩ is a directed graph where nodes, 𝑣 ∈ 𝑉𝒩 represent operations, and edges
𝑒 ∈ 𝐸𝒩 represent inputs to those operations. Simplification, simplify : 𝒢 → 𝒢, aims to transform an operation
graph 𝐺𝒩 ∈ 𝒢, to an equivalent DNN with more commonly supported structure, simplify(𝐺𝒩 ) = 𝐺𝒩 ′ , such that the
resulting DNN has the same behavior as the original ∀𝑥.𝒩 (𝑥) = 𝒩 ′(𝑥), and the resulting DNN has more commonly
supported structures, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐺𝒩 ′) ≥ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐺𝒩 ), where support : 𝒢 → R is a measure for the likelihood that a
verifier supports a structure.

6.1 Available Simplifications

Here we list some of the available simplifications provided by DNNV.

6.1.1 BatchNormalization Simplification

BatchNormalization simplification removes BatchNormalization operations from a network by combining them with
a preceeding Conv operation or Gemm operation. If no applicable preceeding layer exists, the batch normalization
layer is converted into an equivalent Conv operation. This simplification can decrease the number of operations in the
model and increase verifier support, since many verifiers do not support BatchNormalization operations.

6.1.2 Identity Removal

DNNV removes many types of identity operations from DNN models, including explicit Identity operations, Concat
operations with a single input, and Flatten operations applied to flat tensors. Such operations can occur in DNN models
due to user error, or through automated processes, and their removal does not affect model behavior.
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6.1.3 Convert MatMul followed by Add to Gemm

DNNV converts instances of MatMul (matrix multiplication) operations, followed immediately by Add operations
to an equivalent Gemm (generalized matrix multiplication) operation. The Gemm operation generalizes the matrix
multiplication and addition, and can simplify subsequent processing and analysis of the DNN.

6.1.4 Combine Consecutive Gemm

DNNV combines two consecutive Gemm operations into a single equivalent Gemm operation, reducing the number
of operations in the DNN.

6.1.5 Combine Consecutive Conv

In special cases, DNNV can combine consecutive Conv (convolution) operations into a single equivalent Conv oper-
ation, reducing the number of operations in the DNN. Currently, DNNV can combine Conv operations when the first
Conv uses a diagonal 1 by 1 kernel with a stride of 1 and no zero padding, and the second Conv has no zero padding.
This case can occur after converting a normalization layer (such as BatchNormalization) to a Conv operation.

6.1.6 Bundle Pad

DNNV can bundle explicit Pad operations with an immediately succeeding Conv or MaxPool operation. This both
simplifies the DNN model, and increases support, since many verifiers do not support explicit Pad operations (but can
support padding as part of a Conv or MaxPool operation).

6.1.7 Move Activations Backward

DNNV moves activation functions through reshaping operations to immediately succeed the most recent non-
reshaping operation. This is possible since activation functions are element-wise operations. This transformation
can simplify pattern matching in later analysis steps by reducing the number of possible patterns.
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CHAPTER 7

Adding a New Verifier

TODO. Sorry, this page is still in development. Example verifier implementations can be seen here.

In general a verifier will subclass the Verifier base class and implement at least the methods build_inputs(self, prop) and
parse_results(self, prop, results). When verifying a property, the base verifier implementation simplifies the network,
and reduces the property to a set of properties with hyper-rectangles in the input space and a halfspace polytope in the
output space. Each property has methods to add a suffix to the network for reduction to robustness properties, as well
as a method to add a prefix that modifies the input domain to be a unit hyper cube.
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https://github.com/dlshriver/DNNV/tree/v1_refactor/dnnv/verifiers
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